Roll No. \square
Total No. of Questions : 07
B.Sc.(IT) (Sem.-2 ${ }^{\text {nd }}$)

DIGITAL ELECTRONICS FUNDAMENTALS
Subject Code : BS-102
Paper ID : [B0405]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

1. Answer briefly :
i. Find the 2 's complement of 10111000 using the alternative method.
ii. Convert the following binary number to hexadecimal.

1100101001010111
iii. Convert the following Boolean expression to sum of product form :

$$
\overline{\overline{(\mathrm{A}+\mathrm{B})}+\mathrm{C}} .
$$

iv. Prove that $A(A+B)=A$.
v. $\mathrm{X}=1010100 \mathrm{Y}=1000011$.

Find $\mathrm{X}-\mathrm{Y}$ using 2's complement.
vi. What is the difference between sequential circuit and combinational circuit?
vii. Define D type flip flop and draw the truth table.
viii. Draw the block diagram of clocked SR flip flop with preset and clear logic.
ix. Write the steps for transferring a new word to be stored into memory.
x. What is the difference between single error correction and double error correction?

SECTION-B

2. Explain ROM with its block diagram. Draw the Internal logic of $32 * 8$ ROM and its truth table. 10
3. Construct a $16^{*} 1$ multiplexer with two $8^{*} 1$ and one $2 * 1$ multiplexer using block diagram.
4. What is decoder? Draw block diagram of 3 to 8 line decoder with enable.
5. a) Simplify the Boolean function using K-Map.

$$
\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2,4,5,6,8,9,12,13,14)
$$

b) Convert the expression $\mathrm{Y}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})(\mathrm{B}+\overline{\mathrm{C}})$ into standard Product of Sum (POS) Form.
6. a) Draw the block and circuit diagram of master slave JK flip flop. Explain the functionality and race around condition.
b) Find the complement of the function:
$F 1=x \prime y z{ }^{\prime}+x^{\prime} y^{\prime} z$ and $F 2=x\left(y^{\prime} z^{\prime}+y z\right)$ by using DeMorgan's theorem.
7. a) Explain the working of 4 bit universal shift register with diagram.
b) Explain the 4 bit ring counter. Draw the block diagram and truth table.

